Azimuthal Symmetry

Assume V(θ)V(θ,ϕ) then Φ(r,θ). Then, m=0 in the general spherical solution. So, Φ(r,θ)==0(Ar+Br+1)P(cosθ).

Assume we have a potential V(θ) on a sphere of radius a. Find the potential inside and outside. Then, Φin(r,θ)==0ArP(cosθ), Φout(r,θ)==0Br+1P(cosθ).

By orthogonality of the Legendre polynomials, we can specify the inside solution with, V(θ)==0AaP(cosθ) gives 0πV(θ)Pl(cosθ)sinθdcosθ=Aa22+1.

Similarly, for the outer potential, V(θ)==0Ba+1P(cosθ) gives 0πV(θ)Pl(cosθ)sinθdcosθ=Ba+122+1.

Or, we can use the continuity of the inner and outer potentials to achieve the same result. Φin(a,θ)=Φout(a,θ). By orthogonality, Aa=Ba2+1 or B=Aa2+1.

Example

:CUSTOMID: EXAMPLE

Let V(θ)=+V for the top hemisphere and V(θ)=V for the bottom hemisphere. So, A=2+12aV(01P(x)dx10P(x)dx)=2+12aV(01P(x)dx(1)int01P(x)dx)=V2+12a(1(1))01P(x)dx Using the recurrence relation of the legendre polynomials, 01P(x)dx=P1(0)P+1(0)2+1=(1)12!!(+1)!!, =Va(1)122+1!!(+1)!!.

For =1, we get Φin,1(r,θ)=32VarP1(cosθ). For =3, we get Φin,3(r,θ)=78Va3r3P3(cosθ)

For the outside, B=a2+1A.

Recall that in principle, Φ(x)=14πΦsGndΩ. But this may be untenable.

Note that the general form of a dipole is cosθr2.

Example

:CUSTOMID: EXAMPLE

Put a sphere with no charge in an electric field E=E0z^. This polarizes the sphere. Note for the conductor, there is no field inside so the charges are arranged to counteract the applied field. Assume the potential on the sphere is zero. In the far field, this looks like an electric dipole. Hence, Φσcosθr2. Eσ=E0z^. From the external field, the potential in the far field is Φex. Φ=Φex+Φσ.

Eex=E0z^=Φ=ZΦz^. So, Φ(z)=Ez=E0rcosθ=Arcosθ=E0rP1(cosθ), i.e. A1=E0. Φout(z)=Φex+Φσ=E0rP1(cosθ)+=0Br+1P(cosθ).

At r=a, Φ(a,θ)=0=E0acosθ+Ba+1P(cosθ). Then, B1=E0a3. So, Φ(r,θ)=E0rcosθ+E0a2r2cosθ=E0(ra3r2)cosθ.

σ(θ)=ε0Φr|r=a=3ε0E0cosθ.

Addition Theorem

1|xx|==0r<r>+1P(cosγ). r<=min(r,r),r>=max(r,r). cosγ=cosθcosθ+sinθsinθcos(ϕϕ).

Proof. Assume we have a point charge at x on z axis. So there is an angle θ between them. The potential at x is then, 1|xx==0(Ar+Br+1)P(cosθ). If x is on z axis. then, 1|xx|==0(Ar+Br+1)=1|rr|. If \(rr'\) then 1rr=1r11rr. So we are either inside or outside the sphere of radius r. 11x=1+x+x2+x3+=x. Then, for the second case, 1rr=rr+1. Or for the first case you can swap the r and r labels.

So, on z axis, 1|xx|=r<r>+1.

Note also, P(cosγ)=4π2+1m=Ym(θ,ϕ)Ym(θ,ϕ).

In Class Problem

If the ring is a distance b up from the x-y plane. Then, we get x on the ring to be |x|2=a2+b2. Let tanα=ab. So, we get 1|xx|=r<r>+1P(cosα)P(cos0).

Lightning Rod

Conical conducting tip, opening angle β from $z-$axis to the cone, β<π. 2Φ=0. So, 0θβ. So, Legendre polynomials are not our solution since they are defined on 0θπ. We get Legendre function, Pν(cosβ)=0. Rν(r)=Aνrν+Brν+1. In our problem, Rν(r)=Aνrν. νk=ν0,ν1,ν2,. So, Φ(r,θ)=sumk=0AkrνkPνk(cosθ).

At the tip, Φ(r,Θ)=A0rν0Pν0(cosθ). Then the electric field, Er=Φr=ν0A0rν01Pν0 and Eθ=1rϕθA0rν01sinθdPν0dθ.

σ=ε0Eθ|θ=β. So |σ|,|Er|,|Eθ|1r1ν0. As r0, the electric field at the tip blows up. When, βπ, we get a sharp tip and so we get ν0(2ln2πβ)10. Then, the electric field and charge density at the tip blows up.

Author: Christian Cunningham

Created: 2024-05-30 Thu 21:18

Validate