Polar Laplace Equation

\(\nabla^2 = \frac{1}{\rho}\frac{\partial}{\partial\rho}\left(\rho\frac{\partial\Phi}{\partial\rho}\right)+\frac{1}{\rho^2}\frac{\partial^2\Phi}{\partial\phi^2} + \frac{\partial^2\Phi}{\partial z^2}=0\).

General Solution no Z

Assume we have no \(z\) dependence. Then we get solution \(Q(\phi) = \exp(\pm im\phi)\). Then, \(\rho\frac{d}{d\rho}\left(\rho \frac{dR}{d\rho}\right)-m^2R=0\).

For \(m=0\), \(\rho \frac{dR}{d\rho}b_0\Rightarrow R(\rho) = a_0+b_0\ln \rho\).

For \(m\neq 0\), then, \(\rho^2\frac{d^2R}{d\rho^2} + \rho\frac{dR}{d\rho} = m^2R\). Let \(R(\rho) = \rho^\alpha\) as an ansatz. Then, \((\alpha(\alpha-1) + \alpha - m^2)\rho^\alpha = 0\). Thus, \(\alpha^2=m^2\). So, \(\alpha=\pm m\). Overall, \(\Phi(\rho,\phi) = a_0+b_0\ln\rho + \sum_{m=1}^\infty \left(A_m\rho^m+\frac{B_m}{\rho^m}\right)(c_m\sin m\phi+D_m\cos m\phi)\).

Examples

Circular Cylinder

Right side of cylinder is at \(+V\) and the left is \(-0\). At \(\rho=0\) then the potential must be zero. Then, \(b_0=0,a_0=0,B_m=0\). Let \(-\pi\leq \phi\leq \pi\). So, we get even function for angular solutions. Thus, \(\Phi(\rho,\phi) = \sum_m A_m\rho^m \cos m\phi\).

Orthogonality, \(\int_{-\pi}^\pi \cos m\phi \cos m'\phi d\phi = \pi\delta_{m'm}\).

At \(\rho =a\), \(\int_{-\pi}^\pi\cos m'\phi d\phi = A_m' a^{m'}\pi = 2\left[\int_0^{\frac{\pi}{2}}\cos m'\phi d\phi - \int_{\frac{\pi}{2}}^\pi\cos m'\phi d\phi\right] = \frac{4V}{m'}\sin\frac{m'\pi}{2}\).

Thus, \(\Phi(\rho,\phi) = \sum_{m\text{ odd}}\frac{4V}{a^m \pi}(-1)^m\rho^m \cos m\phi\).

Corner

Let \(\beta\) be the angle of the corner, \(\beta\leq 90^\circ\). And the potential be \(V\) at the boundary. Let \(0\leq\phi\leq \beta\) be our region of interest. So, \(\Phi(\rho,\varphi)=R(\rho)Q(\phi)\). Then, Laplace’s equation can be written,

\begin{align*} &\frac{1}{\rho} \frac{\partial}{\partial\rho} \left(\rho\frac{\partial\Phi}{\partial\rho}\right) + \frac{1}{\rho} \frac{\partial^2\Phi}{\partial\phi^2} \end{align*}

Let the polar equation be equal to \(-\nu^2\). The radial solution is then \(\rho^\nu,\rho^{-\nu}\) and for \(\nu=0\), \(R(\rho)=a_0+b_0\ln\rho\). For the finite region, the angular solution for \(\nu=0\) can be \(Q(\phi)=A_0+B_0\phi\). So, \(\Phi(\rho,\phi) = (a_0+b_0\ln\rho)(A_0+B_0\phi) + \sum_{m=1}^\infty(a_m\rho^m+b_m\rho^{-m})(A_m\sin(\nu_m\phi)+B_m\cos(\nu_m\phi))\).

For \(\rho=0\), the potential is finite. So, \(\Phi(\rho,\varphi) = A_0+B_0\phi + \sum_{m=1}^\infty \rho^m(A_m\sin\nu_m\phi+B_m\cos\nu_m\phi)\).

For $φ=0,β,\(\Phi\to V\). \(\Phi(\rho,0) = A_0+\sum_m\rho^m B_m\). So, \(B_m=0\). \(\Phi(\rho,\beta) = V = A_0 + B_0\beta + \sum_m\rho^m A_m\sin(\nu_m\beta)\). So, $νm = \frac{m\pi}{\beta}, A0=V,$ and \(B_0=0\).

Thus, \(\Phi(\rho,\phi) = V + \sum_m A_m\rho^{\frac{m\pi}{\beta}}\sin\left(\frac{m\pi}{\beta}\phi\right)\).

When, \(\rho\to 0\), \(\Phi(\rho,\phi) \approx = V + A_1\rho^{\frac{\pi}{\beta}}\sin\left(\frac{\pi}{\beta}\phi\right)\).

\(E_\rho = -\frac{\partial\Phi}{\partial\rho} = -A_1\frac{\pi}{\beta}\rho^{\frac{\pi}{\beta}-1}\sin\left(\frac{\pi}{\beta}\phi\right)\).

\(E_\phi = -\frac{1}{\rho}\frac{\partial\Phi}{\partial\phi} = -A_1\frac{\pi}{\beta}\rho^{\frac{\pi}{\beta}-1}\cos\left(\frac{\pi}{\beta}\phi\right)\).

\(\sigma = \varepsilon_0 E_\phi(\phi=0) \propto \rho^{\frac{\pi}{\beta}-1}\). So, when \(\beta<\pi\) then \(\sigma\to0\) as \(\rho\to0\). Otherwise, the charge density blows up.

\(\sigma = \varepsilon_0 E_n = \varepsilon_0\vec{E}\cdot\hat{n}\).

General Cylindrical Coordinates

\begin{align*} \frac{1}{\rho} \frac{\partial}{\partial\rho} \left(\rho\frac{\partial\Phi}{\partial\rho}\right) + \frac{1}{\rho} \frac{\partial^2\Phi}{\partial\phi^2} + \frac{\partial^2\Phi}{\partial z^2} = 0 \end{align*}

Separate, \(\Phi(\rho,\phi,z) = R(\rho)Q(\phi)Z(z)\).

Let \(\frac{d^2Z}{dz^2}=-k^2\). We then get \(Z(z) = A\exp(ikz) + B\exp(-ikz)\).

Let \(\frac{d^2Z}{dz^2}=k^2\). We then get \(Z(z) = A\exp(kz) + B\exp(-kz)\).

We get Bessel functions if \(k^2\) and modified Bessel functions if \(-k^2\).

Consider a Cylinder with a potential \(V(\rho,\phi)\) at the top and the bottom and sides are grounded.

Then, we want \(k^2\). We then get \(Q(\phi) = \exp(\pm im\phi)\).

The radial function is then Bessel functions, from the differential equation,

\begin{equation} \frac{\rho}{R}\frac{d}{d\rho}\left(\rho\frac{dR}{d\rho}\right) + (k\rho)^2 - m^2 = 0. \end{equation}

Or, the modified equation,

\begin{equation} x\frac{d}{dx}\left(x\frac{dR}{dx}\right) + [x^2 - m^2]R = 0. \end{equation}

The solutions are \(R(x) = AJ_m(x) + BN_m(x)\).

From the fact we expect a finite potential at the center, we get, \(B=0\). So, \(R(r) = AJ_m(kr)\).

From the bottom being grounded, we can write, \(Z(z) = C\sinh kz\)

To get zero at the sides, \(R(r) = \sum_n A_n J_m\left(\frac{\beta_{mn}}{a}r\right)\). This gives an overall solution, \(\sum_{m=0}^\infty\sum_{n=1}^\infty\sinh(k_m^nz)J_m(k_m^nr)(A_{m,n}\sin(m\phi)+B_{m,n}\cos(m\phi))\)

At the top surface, \(z=L\), \(V=V(\rho,\phi)\). Then from orthogonality, \(\int_0^{2\pi}\int_0^a\Phi(r,\phi,L)\sin(m'\phi)J_{m'}(k_{m'}^{n'}a) rdr d\phi = \int_0^{2\pi}\int_0^a V(\rho,\phi)\sin(m'\phi)J_{m'}(k_{m'}^{n'}a)rdrd\phi = A_{mn}\sinh(k_{mn}L)\pi\frac{a^2}{2}[J_{m'+1}(k_{m'n'}a)]^2\delta_{mm'}\delta_{nn'}\). Also from orthogonality for \(n>0\), \(\int_0^{2\pi}\int_0^a\Phi(r,\phi,L)\cos(m'\phi)J_{m'}(k_{m'}^{n'}a) rdr d\phi = \int_0^{2\pi}\int_0^a V(\rho,\phi)\cos(m'\phi)J_{m'}(k_{m'}^{n'}a)rdrd\phi = A_{mn}\sinh(k_{mn}L)\pi\frac{a^2}{2}[J_{m'+1}(k_{m'n'}a)]^2\delta_{mm'}\delta_{nn'}\). For \(n=0\), \(B_{0n}\to \frac{1}{2}B_{on}\).

Orthogonality of sines, \(\int_0^a\sin\frac{n\pi x}{a}\sin\frac{n'\pi x}{a}dx = \frac{a}{2}\delta_{n'n}\) Orthogonality of the Bessel functions, \(\int J_m(k_{mn}\rho)J_m(k_{mn'}\rho)\rho d\rho = \frac{a^2}{2}[J_{m+1}(k_{m,n}a)^2]\delta_{n'n}\)

Bessel Function Notes

\(J_m(x) = \left(\frac{x}{2}\right)^{m}\sum_{j=0}^\infty \frac{(-1)^j}{j!(m+j)!}\left(\frac{x}{2}\right)^{2j}\).

\(\rho\to 0\), \(J_0(x) = 1, J_m(x) = 0, N_m(x)\to-\infty\).

\(\rho\to \infty\), \(J_m(x) = \sqrt{\frac{2}{\pi x}}\cos(x-m\pi/2-\pi/4), N_m(x)=\sqrt{\frac{2}{\pi x}}\sin(x-m\pi/2-\pi/4)\).

Poisson Equation in Spherical Coordinates

\(\nabla^2\Phi = -\rho/\varepsilon_0\).

\(\Phi(\vec{x}) = \frac{1}{4\pi\epsilon_0}\int\rho(\vec{x}')G(\vec{x},\vec{x}')dx'^3 - \frac{1}{4\pi}\int\Phi_S(\vec{x}')\frac{\partial G}{\partial n'}da'\).

\(G(\vec{x},\vec{x}') = \frac{1}{|\vec{x}-\vec{x}'|} + F(\vec{x},\vec{x}')\), \(\nabla^2=-4\pi\delta(\vec{x}-\vec{x}')\).

\(G_D=0\) on S.

Recall, the Green’s function gives the potential at \(\vec{x}\) due to a point charge at \(\vec{x}'\).

For a sphere and a point charge, \(q'=-\frac{a}{r'}\) at \(\vec{x}''\) with \(|\vec{x}''| = r'' = \frac{a^2}{r'}\). Then, \(G(\vec{x},\vec{x}') = \frac{1}{|\vec{x}-\vec{x}'|}+F(\vec{x},\vec{x}') = \frac{1}{|\vec{x}-\vec{x}'|} - \frac{a}{r'|\vec{x} - r''\hat{x'}}\).

So, \(G(\vec{x},\vec{x}') = -\frac{a}{r'}\frac{1}{|\vec{x}-r''\hat{x}'} + \sum_\ell \frac{r_<^\ell}{r_>^{\ell+1}}P_\ell(\cos\gamma) = -\frac{a}{r'}\frac{1}{|\vec{x}-r''\hat{x}'} + \sum_\ell\frac{4\pi}{2\ell+1} \frac{r_<^\ell}{r_>^{\ell+1}}\sum_{m=-\ell}^\ell Y_{\ell m}^*(\theta',\phi')Y_{\ell m}(\theta,\phi) = \sum_{\ell=0}^\infty\frac{4\pi}{2\ell+1}\left[\sum_{m=-\ell}^{\ell}Y^*Y\right]\left(\frac{r_<^\ell}{r_>^{\ell+1}} - \frac{a}{r'}\frac{r''^\ell}{r^{\ell+1}}\right) = \sum_{\ell=0}^\infty\frac{4\pi}{2\ell+1} \left[\sum_{m=-\ell}^{\ell}Y^*Y\right] \left(\frac{r_<^\ell}{r_>^{\ell+1}} - \frac{a^{2\ell+1}}{r^{\ell+1}r'^{\ell+1}}\right)\). Note that since \(r,r'\) are always on the same side of the sphere and \(r''\) is on the other side, for charges outside the sphere \(r''

For our charges outside and the image inside, i.e. region of interest is outside, \(G(\vec{x},\vec{x}') = \sum_{\ell=0}^\infty\frac{4\pi}{2\ell+1} \left[\sum_{m=-\ell}^{\ell}Y^*(\theta',\phi')Y(\theta,\phi)\right] \left(\frac{r_<^\ell}{r_>^{\ell+1}} - \frac{a^{2\ell+1}}{r^{\ell+1}r'^{\ell+1}}\right)\).

For our charges inside and image outside, i.e. region of interest is inside, \(G(\vec{x},\vec{x}') = \sum_{\ell=0}^\infty\frac{4\pi}{2\ell+1} \left[\sum_{m=-\ell}^{\ell}Y^*(\theta',\phi')Y(\theta,\phi)\right] \left(\frac{r_<^\ell}{r_>^{\ell+1}} - \frac{r^\ell r'^\ell}{a^{2\ell+1}}\right)\).

With our Green’s Function, recall, \(\Phi(\vec{x}) = \frac{1}{4\pi\varepsilon_0}\int\rho(\vec{x}')G(\vec{x},\vec{x}')d^3x' - \frac{1}{4\pi}\Phi_S\cdot\frac{\partial G_D}{\partial n'}da'\).

Charged ring inside a grounded sphere

Let the ring of charge \(Q\) have a radius \(a\) and the sphere have a radius \(b\).

Then, \(\Phi(\vec{x}) = \frac{1}{4\pi\varepsilon_0}\int\rho(\vec{x}')Gd^3\vec{x}' - \frac{1}{4\pi}\int \Phi\frac{\partial G}{\partial n'}da'\). Note the second term is zero due to the conductor being grounded at the boundary \(\Phi(b)=0\). Note, \(\rho(r',\theta',\phi') = \rho(r',\theta') = \frac{Q}{2\pi a}\frac{\delta(r'-a)\delta(\cos\theta'-0)}{a} = \lambda \delta(r'-a)\frac{\delta(\cos\theta')}{r'}\)

\(\Phi(r,\theta) = \frac{1}{4\pi\varepsilon_0}\int \rho(r',\theta')G(r',\theta';r,\theta) d^3x' = \frac{\lambda}{4\pi\varepsilon_0 a}\sum_{\ell=0}^\infty\frac{4\pi}{2\ell+1}\int_0^b \delta(r'-a)\left(\frac{r_<^\ell}{r_>^{\ell+1}} - \frac{r^\ell r'^\ell}{b^{2\ell+1}}\right)r'^2dr'\int_0^{2\pi}\int_{-1}^1 \delta(\cos\theta)Y_\ell^{m*}(\theta',\varphi')d\cos\theta d\phi = \frac{\lambda}{4\pi\varepsilon_0 a}\sum_{\ell=0}^\infty\frac{4\pi}{2\ell+1}\int_0^b \delta(r'-a)\left(\frac{r_<^\ell}{r_>^{\ell+1}} - \frac{r^\ell r'^\ell}{b^{2\ell+1}}\right)r'^2dr'(2\pi\sqrt{\frac{2\ell+1}{4\pi}}P_\ell(0)\delta_{m0})Y_\ell^0(\theta,\varphi) = \frac{\lambda}{4\pi\varepsilon_0 a}\sum_{\ell=0}^\infty\frac{4\pi}{2\ell+1}\int_0^b \delta(r'-a)\left(\frac{r_<^\ell}{r_>^{\ell+1}} - \frac{r^\ell r'^\ell}{b^{2\ell+1}}\right)r'^2dr'(2\pi\sqrt{\frac{2\ell+1}{4\pi}}P_\ell(0))\sqrt{\frac{2\ell+1}{4\pi}}P_\ell(\cos\theta) = \frac{\lambda}{4\pi\varepsilon_0 a}\sum_{\ell=0}^\infty\int_0^b \delta(r'-a)\left(\frac{r_<^\ell}{r_>^{\ell+1}} - \frac{r^\ell r'^\ell}{b^{2\ell+1}}\right)r'^2dr'(2\pi P_\ell(0))P_\ell(\cos\theta)\)

Let \(R_\ell(r)\) be defined as: \(r'a: \frac{r^\ell}{a^{\ell+1}}-\frac{r^\ell a^\ell}{b^{2\ell+1}}\).

\(\Phi(r,\theta) = \frac{Q}{4\pi\varepsilon_0}\sum_\ell R_\ell(r)P_\ell(0)P_\ell(\cos\theta)\).

Method of Images

Consider a charged ring outside the grounded sphere with charge \(Q'=-b/aQ\). \(dQ' = -b/adQ\). Radius \(R = b^2/a\).

Line Charge in a Conducting Sphere

Let the sphere’s radius be \(b\), the line charge is then \(\lambda = \frac{Q}{2b}\). Align it along the $z-$axis.

\(G(\vec{x},\vec{x}') = \sum_{\ell,m}\frac{4\pi}{2\ell+1}\left(\frac{r_<^\ell}{r_>^{\ell+1}}-\frac{r^\ell r'^\ell}{b^{2\ell+1}}\right)Y_{\ell}^{m*}(\theta',\phi')Y_\ell^m(\theta,\phi)\). \(\rho(\vec{x}) = \lambda\delta(x')\delta(y') = \lambda \frac{\delta(\cos\theta'-1)+\delta(\cos\theta')+1}{r'}\frac{1}{2\pi r'} = \frac{\lambda}{2\pi}[\delta(\cos\theta'-1)+\delta(\cos\theta')+1]\)

\(4\pi\varepsilon_0\Phi(\vec{x}) = \int\rho Gd^3x' = \lambda\sum_\ell [P_\ell(1) + P_\ell(-1)]P_\ell(\cos\theta)\int_0^b\left(\frac{r_<^\ell}{r_>^{\ell+1}} - \frac{r^\ell r'^\ell}{b^{2\ell+1}}\right)dr' = \lambda\sum_\ell [1+(-1)^\ell]P_\ell(\cos\theta)\left[\int_0^r\left(\frac{r'^\ell}{r^{\ell+1}} - \frac{r^\ell r'^\ell}{b^{2\ell+1}}\right)dr' + \int_r^b\left(\frac{r^\ell}{r'^{\ell+1}} - \frac{r^\ell r'^\ell}{b^{2\ell+1}}\right)dr'\right] = 2\lambda\left\{\ln\frac{b}{r} + \sum_{n=1}^\infty\frac{4n+1}{2n(2n+1)}\left(1-\left(\frac{r}{b}\right)^{2n}\right)P_{2n}(\cos\theta)\right\} = \frac{Q}{b}\left\{\ln\frac{b}{r} + \sum_{n=1}^\infty\frac{4n+1}{2n(2n+1)}\left(1-\left(\frac{r}{b}\right)^{2n}\right)P_{2n}(\cos\theta)\right\}\)

Note, \(\int_0^{2\pi}\exp(-im\phi')d\phi' = 2\pi\delta_{m0}\).

\(\sigma = \varepsilon_0\left(\frac{\partial \Phi}{\partial r}\right)_{r=b} = \frac{Q}{4\pi\varepsilon_0}\left(1+\sum_n\left(\frac{4n+1}{2n+1}\right)P_{2n}(\cos\theta)\right)\).

Author: Christian Cunningham

Created: 2024-05-30 Thu 21:17

Validate