Heat Capacity

CV or P=dQdT This should be related to ST at constant volume or poressure, N is implied. Remark: dS:=dQdT.

Let α{p,V}. So, S(T,α,N) with N implied. dS=(ST)αdT+(Sα)Tdα. So, (ST)α=CαT, Cα=T(ST)α.

We could also get this from checking dimensions of the original formulation and seeing that entropy has units of Energy per temperature and checking extrinsic and intrinsic.

dU=dQ+dW. dW is constant for constant volume. So, dU=dQ. So, dU=(UT)V,NdT=CVdT. CP(UT)P. CP=(HT)P=T(ST)P

Recall: dU=TdS-pdV and dS=(dS/dT)dT+(dS/dP)dP dH=T(dS/dT)dT=CPdT.

Abstractly, f(g,h) <> g(h,f) or h(f,g). df=(fg)hdg+(fh)gdh. dg=(gf)hdf+(gh)fdh. So, df=[(fg)(gh)f+(fh)g]dh+[(fg)h(gf)h]df. Thus, the second coefficient is 1 so the first coefficient must be zero. Then, (fg)h(gh)f(hf)g=1. And, (fg)h=1(gf)h.

We get the Maxwell relations: (h(fg)h)g=(g(fh)g)h. Note that F(f,g,h)=0. dF=dUTdSSdT=SdTpdV+μdN=(V(FT)VN)TN=(T(FV)TN)VN. So, (SV)TN=(PT)VN.

Author: Christian Cunningham

Created: 2024-05-30 Thu 21:19

Validate