Functions of Operators

Examples

  • \(\exp aA = \sum_i \frac{A^i}{i!A}\)

Theorem - Taylor Expansion

If \(F(A)\) is a Linear Operator then you can always Taylor Expand \(F(A)\).

Theorem - Commutations

If \([A,B]=0\) then \([F(A),B] = 0\).

Theorem - Adjoint

\((F(A))^\dagger = F^*(A^\dagger)\).

Corollary

If \(F\) is real and \(A\) is Hermitian, then \(F(A)\) is Hermitian.

Theorem - Eigenfunction

\(F(A)|\psi\rangle=F(a)|\psi\rangle\).

Examples

\(\exp (\frac{1}{i\hbar}\mathcal{H}t) |\varphi_n\rangle = \exp(\frac{1}{i\hbar}E_nt)|\varphi_n\rangle\).

Author: Christian Cunningham

Created: 2024-05-30 Thu 21:16

Validate