Time Evolution of States

Notation

  • |α at t=t0, |α,t0
  • |α,t0 at time t, |α,t0;t
  • |α,t0;t=U^(t,t0)|α,t0, U^(t,t0) is the propagator, or time evolution operator

Deriving Propogator

  • U^(t0,t0)=I=U^U^
  • U^(t0+dt,t0)=IiH^dt
  • U^(t+dt,t)U^(t,t0)=U^(t+dt,t0)
  • (IiH^dt)U^(t,t0)=U^(t,t0)idtH^U^(t,t0)=U^(t+dt,t0)
  • idtH^U^(t,t0)=U^(t+dt,t0)U^(t,t0)=tU^(t,t0)dt
  • iH^U^(t,t0)=tU^(t,t0)
  • H^U^(t,t0)=itU^(t,t0)
  • H^U^(t,t0)|α,t0=itU^(t,t0)|α,t0
  • H^|α,t0;t=it|α,t0;t

Types of Propagators

Case 1 H^H^(t)

U^(t,t0)=exp(iH^(tt0))

Assume {|Ei} are eigenstates of the Hamiltonian. Then, |α,t0=n|EnEn|α,t0=ncn(0)|En. So the time translated is, |α,t0=0;t=nexp(iEnt)|EnEn|α,t0=nexp(iEnt)cn(0)|En=ncn(t)|En.

Case 2 H^=H^(t) but [H^(t1),H^(t2)]=0

U^(t,t0)=exp(it0tdtH^(t))

Example

Time varying magnetic field, but the magnetic field strength is the only thing that is varying

Case 3 H^=H^(t) but [H^(t1),H^(t2)]0

U^(t,t0)=I+n(i)nt0tdt1t0t1dt2t0tn1dtnH^(t1)H^(t2)H^(tn) - Dyson series

Example

Time varying magnetic field, but the spin operator is also changing in time (such that the eigenbasis is shifting) (i.e. SzSx)

Time Evolution of Expectation Values

Ehrenfest’s Theorem

ddtA=1i[A,H]+At.

Proof.

A=Ψ|A|Ψ

ddtA=Ψt|A|Ψ+Ψ|At|Ψ+Ψ|A|Ψt=1iHΨ|A|Ψ+1iΨ|A|HΨ+Ψ|At|Ψ=1iΨ|HA|Ψ+1iΨ|AH|Ψ+Ψ|At|Ψ=1i[A,H]+At.

Results

Constants of Motion

Thus, if AA(t) then ddtA=1i[A,H]. Further, if they commute then the expectation value of A is totally time independent, A is a constant of the motion.

If A is the Hamiltonian and HH(t) then H is a constant of the motion.

Stationary State

If B does not commute with the Hamiltonian then ddtB=Bt. If we choose |Eκ, an eigenstate of the Hamiltonian, then Eκ|B|Eκ|t=Eκ|exp(iEκt/)Bexp(iEκt/)|Eκ=Eκ|B|Eκ. Thus, the eigenstates of this Hamiltonian are the Stationary states. With ddtEκ|B|Eκ=0 which implies that [B,H]=0 for these states.

Superposition of Stationary States

B, |α,t0=nCn(0)|En, |α,t0;t=nCn(0)exp(iEnt/)|En.

B=nmCm(0)Cn(0)exp(iEmt/)exp(iEnt/)Em|B|En=nmCm(0)Cn(0)exp(it(EmEn)/)Em|B|En=nmCm(0)Cn(0)exp(itωnm)/)Em|B|En.

ωnm=(EnEm) is the Bohr frequency.

Author: Christian Cunningham

Created: 2024-05-30 Thu 21:21

Validate