Eigenstate

Definition

An eigenstate for an operator \(\hat{A}\) is a state \(|a\rangle\) such that \(A|a\rangle = a|a\rangle\).

Eigenvalues and Eigenvectors

A state vector \(|\psi\rangle\) is an eigenvector of \(\hat{A}\) iff \(\hat{A}|\psi\rangle = \alpha|\psi\rangle\). \(\alpha\) is the eigenvalue of the operator.

Theorem

The eigenvalues of a Hermitian operator are real and eigenstates of \(\hat{A}\) correspond to different eigenvalues are orthogonal.

Proof.

\(A|\varphi_n\rangle = a_n|\varphi_n\rangle\).

(1) \(\langle\varphi_m|A|\varphi_n\rangle = a_n\langle\varphi_m|\varphi_n\rangle\).

\(\langle\varphi_m|A^\dagger = a_m^*\langle\varphi_m|\).

(2) \(\langle\varphi_m|A^\dagger|\varphi_n\rangle = a_m^*\langle\varphi_m|\varphi_n\rangle\).

(1) - (2): \(a_n\langle\varphi_m|\varphi_n\rangle - a_m^*\langle\varphi_m|\varphi_n\rangle = (a_n-a_m^*)\langle\varphi_m|\varphi_n\rangle = 0\)

For \(m=n\), \(a_n-a_m^*=0\), hence \(a_n=a_n^*\). Therefore, the eigenvalues are real.

For \(a_m\neq a_n\) (different eigenvalues), \(\langle\varphi_m|\varphi_n\rangle = 0\), thus they are orthogonal.

Finding Probabilities of Measurements

Measuring \(A\). \(\psi(\vec{r},t)=\sum_n c_n|\varphi_n\rangle\), \(a_n\to|c_n|^2\), \(c_n = \langle\varphi_n|\psi\rangle\).

Author: Christian Cunningham

Created: 2024-05-30 Thu 21:18

Validate