Complex Analysis

Complex Numbers

Definition - Rectangular Form

\(z=a+bi\) where \(a,b\in\mathbb{R}\) and \(i\) satisfies \(i^2=-1\).

Complex Conjugate

Definition

\(\overline{z} = a-bi\).

Basic Algebra

  • Addition. \(z_1+z_2 = (a_1+a_2) + (b_1+b_2)i\)
  • Multiplication. \(z_1z_2 = (a_1a_2 - b_1b_2) + (a_1b_2 + a_2b_1)i\)
  • Division. \(\frac{z_1}{z_2} = \frac{z_1\overline{z}_2}{z_2\overline{z}_2} = \frac{z_1\overline{z}_2}{a_2^2+b_2^2} = \frac{(a_1a_2+b_1b_2) + (a_2b_1-a_1b_2)i}{a_2^2+b_2^2}\)

Exponential Representation - Polar Form

Definition

\(z=|z|\exp(i\theta)\), \(\theta = \arctan(b/a)\), \(|z| = \sqrt{z\overline{z}}\)

Conjugate

\(\overline{z} = |z|\exp(-i\theta)\)

Argand Diagram

`Complex Plane’

\textbf{Re}al and Complex (\textbf{Im}) axes.

Thus, complex numbers can be represented as a vector in the complex plane.

Geometry

Addition - Tail-Tip Addition

\(+(z_1,z_2) = (a_1+b_1) + (a_2+b_2)i\) - vector tail-tip addition

Addition Length Relation

\(|z_1 + z_2| \leq |z_1| + |z_2|\)

Subtraction - Tail-Tip addition using the opposite direction of the second operand

\(-(z_1,z_2) = +(z_1,-z_2) = (a_1-b_1) + (a_2-b_2)i\)

Subtraction Length Relation

\(|z_1 - z_2| \geq |z_1| - |z_2|\)

Multiplication

\(z_1z_2 = r_1r_2\exp(i(\theta_1+\theta_2))\)

Functions of a Complex Variable

Author: Christian Cunningham

Created: 2024-05-30 Thu 21:15

Validate