Complex Analysis

Complex Numbers

Definition - Rectangular Form

z=a+bi where a,bR and i satisfies i2=1.

Complex Conjugate

Definition

z=abi.

Basic Algebra

  • Addition. z1+z2=(a1+a2)+(b1+b2)i
  • Multiplication. z1z2=(a1a2b1b2)+(a1b2+a2b1)i
  • Division. z1z2=z1z2z2z2=z1z2a22+b22=(a1a2+b1b2)+(a2b1a1b2)ia22+b22

Exponential Representation - Polar Form

Definition

z=|z|exp(iθ), θ=arctan(b/a), |z|=zz

Conjugate

z=|z|exp(iθ)

Argand Diagram

`Complex Plane’

\textbf{Re}al and Complex (\textbf{Im}) axes.

Thus, complex numbers can be represented as a vector in the complex plane.

Geometry

Addition - Tail-Tip Addition

+(z1,z2)=(a1+b1)+(a2+b2)i - vector tail-tip addition

Addition Length Relation

|z1+z2||z1|+|z2|

Subtraction - Tail-Tip addition using the opposite direction of the second operand

(z1,z2)=+(z1,z2)=(a1b1)+(a2b2)i

Subtraction Length Relation

|z1z2||z1||z2|

Multiplication

z1z2=r1r2exp(i(θ1+θ2))

Functions of a Complex Variable

Author: Christian Cunningham

Created: 2024-05-30 Thu 21:15

Validate