Gram-Schmidt Orthogonalization
Motivation
Assume we have a set of vectors \(\{|v_i\rangle\}\) that are linearly independent, but not orthogonal to one another. Can we construct an orthormal set from them?
Procedure
Abstract
- Normalize \(|v_1\rangle \to |1\rangle\)
- Take $|li〉=|vi〉 - $ components of \(|1\rangle,\cdots,|i-1\rangle\)
- Normalize \(|l_i\rangle\) put in \(|i\rangle\).
Concrete Procedure
\(P_n = |n\rangle\langle n|\).
- \(|1\rangle = \frac{|v_1\rangle}{|||v_1\rangle||}\)
- \(|l_i\rangle = |v_i\rangle - \sum_{j=1}^{i-1} P_j|v_i\rangle\)
- \(|i\rangle = \frac{|l_i\rangle}{|||l_i\rangle||}\)
- Repeat 2-3 for \(i=2,\cdots,n\) in increasing order
- \(\{|i\rangle\}\) is a set of orthonormal basis vectors
Condensed
\(|i\rangle = \frac{|v_i\rangle - \sum_{j=1}^{i-1}P_j|v_i\rangle}{|||v_i\rangle - \sum_{j=1}^{i-1}P_j|v_i\rangle||}\).
Applications
- AMO Physics: Perturbation Theory, Degenerate Eigenvalues
- Accelerator Physics: Degeneracies
- QR Decomposition
- Legendre Polynomials (\(\{1,x,x^2,\cdots\}\))