Gram-Schmidt Orthogonalization

Motivation

Assume we have a set of vectors \(\{|v_i\rangle\}\) that are linearly independent, but not orthogonal to one another. Can we construct an orthormal set from them?

Procedure

Abstract

  1. Normalize \(|v_1\rangle \to |1\rangle\)
  2. Take $|li⟩=|vi⟩ - $ components of \(|1\rangle,\cdots,|i-1\rangle\)
  3. Normalize \(|l_i\rangle\) put in \(|i\rangle\).

Concrete Procedure

\(P_n = |n\rangle\langle n|\).

  1. \(|1\rangle = \frac{|v_1\rangle}{|||v_1\rangle||}\)
  2. \(|l_i\rangle = |v_i\rangle - \sum_{j=1}^{i-1} P_j|v_i\rangle\)
  3. \(|i\rangle = \frac{|l_i\rangle}{|||l_i\rangle||}\)
  4. Repeat 2-3 for \(i=2,\cdots,n\) in increasing order
  5. \(\{|i\rangle\}\) is a set of orthonormal basis vectors

Condensed

\(|i\rangle = \frac{|v_i\rangle - \sum_{j=1}^{i-1}P_j|v_i\rangle}{|||v_i\rangle - \sum_{j=1}^{i-1}P_j|v_i\rangle||}\).

Applications

  • AMO Physics: Perturbation Theory, Degenerate Eigenvalues
  • Accelerator Physics: Degeneracies
  • QR Decomposition
  • Legendre Polynomials (\(\{1,x,x^2,\cdots\}\))

Author: Christian Cunningham

Created: 2024-05-30 Thu 21:15

Validate